Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(x, y, z)) → ACTIVE(z)
PROPER(f(x, y, z)) → PROPER(x)
TOP(mark(x)) → PROPER(x)
PROPER(f(x, y, z)) → PROPER(z)
TOP(ok(x)) → ACTIVE(x)
ACTIVE(f(x, y, z)) → F(x, y, active(z))
ACTIVE(f(b, c, x)) → F(x, x, x)
TOP(ok(x)) → TOP(active(x))
TOP(mark(x)) → TOP(proper(x))
PROPER(f(x, y, z)) → PROPER(y)
PROPER(f(x, y, z)) → F(proper(x), proper(y), proper(z))
F(x, y, mark(z)) → F(x, y, z)
F(ok(x), ok(y), ok(z)) → F(x, y, z)

The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(x, y, z)) → ACTIVE(z)
PROPER(f(x, y, z)) → PROPER(x)
TOP(mark(x)) → PROPER(x)
PROPER(f(x, y, z)) → PROPER(z)
TOP(ok(x)) → ACTIVE(x)
ACTIVE(f(x, y, z)) → F(x, y, active(z))
ACTIVE(f(b, c, x)) → F(x, x, x)
TOP(ok(x)) → TOP(active(x))
TOP(mark(x)) → TOP(proper(x))
PROPER(f(x, y, z)) → PROPER(y)
PROPER(f(x, y, z)) → F(proper(x), proper(y), proper(z))
F(x, y, mark(z)) → F(x, y, z)
F(ok(x), ok(y), ok(z)) → F(x, y, z)

The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

TOP(mark(x)) → PROPER(x)
PROPER(f(x, y, z)) → PROPER(x)
ACTIVE(f(x, y, z)) → ACTIVE(z)
PROPER(f(x, y, z)) → PROPER(z)
TOP(ok(x)) → ACTIVE(x)
ACTIVE(f(x, y, z)) → F(x, y, active(z))
ACTIVE(f(b, c, x)) → F(x, x, x)
TOP(ok(x)) → TOP(active(x))
TOP(mark(x)) → TOP(proper(x))
PROPER(f(x, y, z)) → PROPER(y)
PROPER(f(x, y, z)) → F(proper(x), proper(y), proper(z))
F(ok(x), ok(y), ok(z)) → F(x, y, z)
F(x, y, mark(z)) → F(x, y, z)

The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 4 SCCs with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(x, y, mark(z)) → F(x, y, z)
F(ok(x), ok(y), ok(z)) → F(x, y, z)

The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


F(ok(x), ok(y), ok(z)) → F(x, y, z)
The remaining pairs can at least be oriented weakly.

F(x, y, mark(z)) → F(x, y, z)
Used ordering: Combined order from the following AFS and order.
F(x1, x2, x3)  =  x3
mark(x1)  =  x1
ok(x1)  =  ok(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(x, y, mark(z)) → F(x, y, z)

The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


F(x, y, mark(z)) → F(x, y, z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
F(x1, x2, x3)  =  x3
mark(x1)  =  mark(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(f(x, y, z)) → PROPER(x)
PROPER(f(x, y, z)) → PROPER(z)
PROPER(f(x, y, z)) → PROPER(y)

The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(f(x, y, z)) → PROPER(x)
PROPER(f(x, y, z)) → PROPER(z)
PROPER(f(x, y, z)) → PROPER(y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
f(x1, x2, x3)  =  f(x1, x2, x3)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(x, y, z)) → ACTIVE(z)

The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(x, y, z)) → ACTIVE(z)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
f(x1, x2, x3)  =  f(x3)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(x)) → TOP(active(x))
TOP(mark(x)) → TOP(proper(x))

The TRS R consists of the following rules:

active(f(b, c, x)) → mark(f(x, x, x))
active(f(x, y, z)) → f(x, y, active(z))
active(d) → m(b)
f(x, y, mark(z)) → mark(f(x, y, z))
active(d) → mark(c)
proper(b) → ok(b)
proper(c) → ok(c)
proper(d) → ok(d)
proper(f(x, y, z)) → f(proper(x), proper(y), proper(z))
f(ok(x), ok(y), ok(z)) → ok(f(x, y, z))
top(mark(x)) → top(proper(x))
top(ok(x)) → top(active(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.